Physical synthesis of nanoparticles: a bottom-up approach


The purpose of the course is to give a survey of the many techniques of physical synthesis and analysis of nanoparticles (NPs).  The course is structured as follows: Introduction to the nanoparticles and their applications. Definition of nanoparticles. Importance of nanoparticles in nanotechnology. Definition of bottom-up and top-down synthesis. Application of NPs in medicine and diagnostics, catalysis and photovoltaic.Properties of Nanoparticles. Morphology and structure properties. Shell structure and magic numbers. Multitwinning. Electronic structure. Quantum size effects. Optical properties. Mie’s theory of optical absorption of nanoparticles. Surface plasmoni resonances. Magnetic properties. Superparamagnetism. Physical synthesis of nanoparticles. Ball-milling. Gas aggregation. Seeded supersonic beam. Laser evaporation. Pulsed arc, pulsed microplasma. Evaporation on substrate and self aggregation. Analysis of nanoparticles. Mass spectroscopy and filtering. Electron microscopy: TEM, STEM, SEM. AFM. X-ray photoelectron spectroscopy. Optical reflectivity. Magnetometry: SQUID, VSM, AGFM. In-flight analysis: electron diffraction, photoelectron spectroscopy, magnetic beam deflection. Experiments on nanoparticles. Examples of experiments on selected assemblies of nanoparticles. This part will be followed by a video tutorial in a laboratory.

Frequenza e Attestati

Frequenza
GRATUITO!
Attestato di Partecipazione
GRATUITO!

Categoria

Scienze

Ore di Formazione

20

Livello

Avanzato

Modalità Corso

Tutoraggio

Lingua

English

Durata

5 Settimane

Tipologia

Online

Stato del Corso

Auto apprendimento

Avvio Iscrizioni

6 Apr 2017

Apertura Corso

21 Apr 2017

Inizo Tutoraggio

21 Apr 2017

Fine Tutoraggio

10 Giu 2017

Autoapprendimento da

11 Giu 2017

Chiusura Corso

Non impostato
After the course, the students will have some essential knowledge of: 

  • the physical properties of NPs: structure, morphology, electronic properties, magnetic properties. 
  • the techniques of synthesis of NPs; 
  • the methods of analysis of NPs: microscopy, spectroscopy, magnetometry.

The course is intended for M. Sci. and Ph. D. students in Physics, Chemistry, Material Science and Material Engineering. The students will have prior knowledge of basic classical physics, principle of quantum mechanics and of solid state physics.
  • C. Binns, Nanoclusters, deposited on Surfaces, Surface Science Reports 44(1), 2001. 
  • R.L. Johnston, & J.P. Wilcoxon (Eds.), Metal Nanoparticles and Nanoalloys, Series Frontiers in Nanoscience, Vol.3, Elsevier 2012.
  • U. Kreibig, M. Vollmer, Optical properties of Metal Clusters, Series Materials Science 25, Springer 1995. 
  • G. Schmid G. (Ed.), Nanoparticles: From Theory to Application, Weinheim(FRG), Wiley-VCH Verlag GmbH & Co. KGaA, 2004. 

Many other references are suggested in the slide presentation for specific subjects.

The course is structured in different video presentations, where slides will be shown and commented. Concise and essential description of physical phenomena in nanosystems will be given following an experimental approach.

SERGIO D'ADDATO

SERGIO D'ADDATO

Scienze Fisiche, Informatiche e Matematiche