Vai al contenuto principale
  • Espandi
  • Corsi
  • Pathway
  • Master
  • Courseware
  • English ‎(en)‎‎Español - Internacional ‎(es)‎‎Italiano ‎(it)‎‎
  •  Login
  • Home

EDUOPEN: Dashboard

Università di Milano-Bicocca
Pathway in

Introduction to Data Mining


0%
Completo

In corso

Iscriviti adesso

Lingua: English

Categoria: Informatica, Gestione e Analisi dei Dati

Durata: 120 Ore

Obiettivo: Corsi Curriculari, Lifelong Learning

Frequenza: Gratuito


1097 Studenti Iscritti

22 Apr

2016

Non impostato

  • Copertina
  • Corsi
  • Sommario
    The Introduction to Data Mining pathway teaches you how to use the data mining methodology to analyze both structured, semi-structured and un-structured data. The pathway consists of the following courses; Classification, Clustering and Association, and Text Mining. You will learn how to develop data mining workflows using the KNIME open source software platform. You are not required to code any programs while KNIME allows you to use open source programming languages and powerful commercial software environments; R, Weka, Matlab, Python, Java, ... and to access data from powerful platforms such as Twitter and Google.
  • Pre-requisiti
    Basic knowledge of probability, statistics, and mathematics.
  • Course sequence

    You should attend the three courses of the Pathway in the following order: Classification, Clustering and Association, and Text Mining. However, if you know how to use the KNIME open source platform, have basic knowledge of the R programming language, then, no special order applies.

  • Evaluation and Certificates
    Each course of the Pathway issues an Attendance Certificate  whether the following conditions are fulfilled: all practice sessions associated with each lecture are accomplished; the KNIME workflow associated with each practice session is uploaded to the course platform.
  • Docenti e Tutor
    FABIO STELLA

    FABIO STELLA

    Department of Informatics, Systems and Communication
  • Elenco Corsi
  • Data Mining - Classification
    FABIO STELLA

    Università di Milano-Bicocca

    Data Mining - Classification

    • 45 Ore
    • 22 Apr 2016
    • Non impostato

  • Data Mining - Clustering and Association
    FABIO STELLA

    Università di Milano-Bicocca

    Data Mining - Clustering and Association

    • 40 Ore
    • 14 Set 2016
    • Non impostato

  • Text Mining
    FABIO STELLA

    Università di Milano-Bicocca

    Text Mining

    • 35 Ore
    • 21 Apr 2017
    • Non impostato

  • [CAPSTONE] Introduction to Data Mining
    FABIO STELLA

    Università di Milano-Bicocca

    [CAPSTONE] Introduction to Data Mining

    • 125 Ore
    • 15 Mag 2017
    • Non impostato

EDUOPEN

Il Progetto e la Mission
Le Istituzioni aderenti
Consiglio dei Rettori
Consiglio Scientifico
Comitato Tecnico
I Docenti
Cronologia

I CORSI

MOOCs e Percorsi
Accessibilità

RICERCA

On Media and Web
Research Reports
Conferences

CONDIZIONI

EDUOPEN:
Informativa
Termini per l'utilizzo e Tutela della Privacy
Licenze
IDEM-GARR:
Informazioni per gli utenti
Trattamento dati personali

PARTNER

EDZLEARN SERVICES PRIVATE LIMITED
CINECA
GARR
Blackboard
Paperlit

CONTATTI

 Viale Timavo 93,
42121 Reggio Emilia (Italy)
 Support (NON inviare richieste su questioni didattiche che restano a cura dei referenti dei corsi. Prima di inviare una richiesta verificare in home eventuali avvisi e aggiornamenti).
 +39 0522 522 521
 www.eduopen.org
  HELPDESK

EduOpen LMS è stato sviluppato da EDZLEARN & Centro Interateneo Edunova
utilizzando MOODLE LMS e il tema EDWISER remUI 

Il Progetto Eduopen è stato sostenuto finanziariamente dal MIUR , Ministero italiano dell'Istruzione , dell'Università e della Ricerca


Miur logo


Eduopen LMS (c) Versione 2.0.0, 19 Novembre 2018 - Tutti i diritti riservati


Licenza Creative Commons
EduOpen contents are distribute with a Creative Commons 4.0 International
Attribution - NonCommercial - ShareAlike License.