Saltar a contenido principal
  • Expandir
  • Cursos
  • Pathway
  • Master
  • Courseware
  • English ‎(en)‎‎Español - Internacional ‎(es)‎‎Italiano ‎(it)‎‎
  •  Acceder
  • Página Principal

EDUOPEN: Área personal

Universidad de Milano-Bicocca
Pathway en

Introduction to Data Mining


0%
Completo

Actual

Enrol now

Idioma: English

Categorìa: Informatica, Gestión y Análisis de datos

Duraciòn: 120 Horas

Objetivo: Creditos, Lifelong Learning

Asistencia: Gratuito


1097 Estudiantes Inscritos

abr 22

2016

No establecido

  • Portada
  • Cursos
  • Sumario
    The Introduction to Data Mining pathway teaches you how to use the data mining methodology to analyze both structured, semi-structured and un-structured data. The pathway consists of the following courses; Classification, Clustering and Association, and Text Mining. You will learn how to develop data mining workflows using the KNIME open source software platform. You are not required to code any programs while KNIME allows you to use open source programming languages and powerful commercial software environments; R, Weka, Matlab, Python, Java, ... and to access data from powerful platforms such as Twitter and Google.
  • Conocimiento Recomendado
    Basic knowledge of probability, statistics, and mathematics.
  • Course sequence

    You should attend the three courses of the Pathway in the following order: Classification, Clustering and Association, and Text Mining. However, if you know how to use the KNIME open source platform, have basic knowledge of the R programming language, then, no special order applies.

  • Evaluation and Certificates
    Each course of the Pathway issues an Attendance Certificate  whether the following conditions are fulfilled: all practice sessions associated with each lecture are accomplished; the KNIME workflow associated with each practice session is uploaded to the course platform.
  • Profesores y Tutors
    FABIO STELLA

    FABIO STELLA

    Department of Informatics, Systems and Communication
  • Lista de Cursos
  • Data Mining - Classification
    FABIO STELLA

    Universidad de Milano-Bicocca

    Data Mining - Classification

    • 45 Horas
    • abr 22, 2016
    • No establecido

  • Data Mining - Clustering and Association
    FABIO STELLA

    Universidad de Milano-Bicocca

    Data Mining - Clustering and Association

    • 40 Horas
    • sep 14, 2016
    • No establecido

  • Text Mining
    FABIO STELLA

    Universidad de Milano-Bicocca

    Text Mining

    • 35 Horas
    • abr 21, 2017
    • No establecido

  • [CAPSTONE] Introduction to Data Mining
    FABIO STELLA

    Universidad de Milano-Bicocca

    [CAPSTONE] Introduction to Data Mining

    • 125 Horas
    • may 15, 2017
    • No establecido

EDUOPEN

El Proyecto y la Mission
Instituciones
Consejo de los Rectores
Comité Científico
Comité Técnico
Teachers
Linea de Tiempo

CURSOS

MOOC y Caminos
Accesibilidad

RICERCA

On Media and Web
Research Reports
Conferences

CONDITIONES

EDUOPEN:
Información
Termini per l'utilizzo e Tutela della Privacy
Licencias
IDEM-GARR:
Informazioni per gli utenti
Trattamento dati personali

PARTNER

EDZLEARN SERVICES PRIVATE LIMITED
CINECA
GARR
Blackboard
Paperlit

CONTACTOS

 Viale Timavo 93,
42121 Reggio Emilia (Italy)
 Support (NON inviare richieste su questioni didattiche che restano a cura dei referenti dei corsi. Prima di inviare una richiesta verificare in home eventuali avvisi e aggiornamenti).
 +39 0522 522 521
 www.eduopen.org
  HELPDESK

EduOpen LMS fue desarrollado por EDZLEARN & Centro Interateneo Edunova
usando MOODLE LMS y el tema EDWISER remUI 

El Proyecto Eduopen fue financiado financieramente por MIUR, Ministerio de Educación, Universidad e Investigación de Italia.


Miur logo


Eduopen LMS (c) Versión 2.0.0, 19 Noviembre 2018 - Todos los derechos reservados


Licenza Creative Commons
EduOpen contents are distribute with a Creative Commons 4.0 International
Attribution - NonCommercial - ShareAlike License.