Collaboration and cooperation in industrial robotics


This course will describe how modern robotics technologies can be introduced into smart factory environments. In particular, we will describe how robots can cooperate with human operators and among each other, in an industrial context. 

More specifically, we will describe real world cases in which multiple robots are simultaneously utilized, and we will see how they can coordinate themselves to achieve some common objective. Subsequently, we will see how interface systems can be developed to allow human operators to interact with those robots. Finally, we will describe methodologies for enabling physical human-robot interaction.


Collaboration and cooperation in industrial robotics

Il corso descrive le modalità di introduzione delle moderne tecnologie della robotica nelle smart factory. In particolare, si presentano le strategie attraverso cui i robot cooperano con gli esseri umani e tra di loro nei contesti industriali. Vengono descritti casi reali in cui la coordinazione fra più robot utilizzati contemporaneamente consente di raggiungere obiettivi comuni. Inoltre, si definiscono sistemi di interfaccia e metodologie che rendono possibile l'interazione (anche fisica) degli operatori umani con i robot.

  • To model a multi-robot system used in industrial applications and to define coordination strategies 
  • To develop effective human-robot interfaces 
  • To develop control strategies for safe physical human-robot interaction

Standard basic Engineering math and physics background: differential equations, basic mechanics; automatic control. All the references are available in the course pages.

The course is organized as a collection of video-lectures. Each video-lecture is self-contained but, at the same time, linked with the other ones to define an overall big picture. Lectures are organized in three main modules, and each module is organized in sections.The first module will describe how robots can cooperate among each other, in such a way that common objectives can be achieved. The second module will provide methodology for the design of interfaces, for letting a human operator interact with the robots. The third module will then address physical human-robot interaction.

In order to get attendance certificate and open badge, you have to pass the three questionnaires in the course.
Collaboration among robots

Instructor: Lorenzo SABATTINI


Lezioni

Introduction - prima parte (8'17")
Introduction - seconda parte (11'02")
Model of a mobile robot (12'27")
Feedback linearization (7'57")
Introduction to graph theory (10'43")
Consensus (9'37")
Formation control (6'19")
Localization (12'34")
Roadmap (6'58")
Automated roadmap creation (12'54")
A* algorithm (5'39")
D* algorithm (7'25")
Hierarchical coordination (8'26")
Top layer coordination (6'25")
Bottom layer coordination (5'39")
Voronoi partitioning (5'14")
Dynamic sector partitioning (13'01")
Advanced traffic model (11'08")
Introduction to task allocation (4'43")
Hungarian algorithm (10'12")
How to define costs (4'48")
Dynamic costs (5'26")
Human-robot interfaces

Instructor: Valeria VILLANI


Lezioni

Introduction (9'05")
Human-centred design (12'56")
Discoverability (21'43")
Usability heuristics [1/3] (14'36")
Usability heuristics [2/3] (11'33")
Usability heuristics [3/3] (18'37")
Best practices for operator interface design (14'26")
Usability assessment: heuristic evaluation (13'27")
Usability assessment: experiments with users (16'18")
Common metrics in HRI (21'39")
Situation awareness (15'03")
Interaction with industrial robots (6'06")
Learning by demonstration (14'00")
Augmented reality for HRI (9'26")
Input modes (13'42")
Natural and tangible human-robot interfaces (12'29")
Affective robots (12'34")
Social robotics (15'51")
Physical human-robot interaction

Instructor: Federica FERRAGUTI


Lezioni

Introduction (8'53")
Mechanical structure of industrial robots (9'43")
Robot dynamic model (10'13")
Position control (11'27")
Force control (8'53")
Introduction to passivity (15'46")
Interaction control (9'40")
Variable admittance passivity proof (6'59")
Methods for robot programming (13'57")
Robot programming by demonstration (9'28")
Tool compensation in walk-through programming (13'59")
Examples of application (5'21")
Introduction to teleoperation (9'27")
Stability vs. transparency (13'05")
dealing with time delays (11'19")
I-SUR: Intelligent Surgical Robotics (15'17")
Modalità Corso
Autoapprendimento
Stato del corso
Auto apprendimento
Durata
6 settimane
Impegno
12 ore/settimana
Ore formazione
25
Categoria
Scienze
Lingua
Inglese
Tipo
Online
Livello
Intermedio
Avvio Iscrizioni
6 Apr 2017
Apertura Corso
21 Apr 2017
Chiusura Corso
Non impostato

Partecipazione e Attestati

Quota di iscrizione
GRATUITO!
Attestato di Partecipazione
GRATUITO!


VALERIA VILLANI

DISMI – Dipartimento di Scienze e Metodi dell’Ingegneria

LORENZO SABATTINI

DISMI – Dipartimento di Scienze e Metodi dell’Ingegneria

FEDERICA FERRAGUTI

DISMI – Dipartimento di Scienze e Metodi dell’Ingegneria

Corsi collegati