Physical synthesis of nanoparticles: a bottom-up approach

The purpose of the course is to give a survey of the many techniques of physical synthesis and analysis of nanoparticles (NPs). 

 The course is structured as follows: 

  • Introduction to the nanoparticles and their applications. Definition of nanoparticles. Importance of nanoparticles in nanotechnology. Definition of bottom-up and top-down synthesis. Application of NPs in medicine and diagnostics, catalysis and photovoltaic.
  • Properties of Nanoparticles. Morphology and structure properties. Shell structure and magic numbers. Multitwinning. Electronic structure. Quantum size effects. Optical properties. Mie’s theory of optical absorption of nanoparticles. Surface plasmoni resonances. Magnetic properties. Superparamagnetism. 
  • Physical synthesis of nanoparticles. Ball-milling. Gas aggregation. Seeded supersonic beam. Laser evaporation. Pulsed arc, pulsed microplasma. Evaporation on substrate and self aggregation. 
  • Analysis of nanoparticles. Mass spectroscopy and filtering. Electron microscopy: TEM, STEM, SEM. AFM. X-ray photoelectron spectroscopy. Optical reflectivity. Magnetometry: SQUID, VSM, AGFM. In-flight analysis: electron diffraction, photoelectron spectroscopy, magnetic beam deflection. 
  • Experiments on nanoparticles. Examples of experiments on selected assemblies of nanoparticles. This part will be followed by a video tutorial in a laboratory.

Physical synthesis of nanoparticles: a bottom-up approach

Il corso fornisce una panoramica sulle numerose tecniche di analisi e sintesi fisica delle nanoparticelle (NPs). È composto da cinque Sezioni: 1- introduzione alle nanoparticelle e alle loro applicazioni; 2- proprietà delle nanoparticelle; 3- sintesi fisica delle nanoparticelle; 4- analisi delle nanoparticelle; 5- esperimenti sulle nanoparticelle. Attraverso le videolezioni, gli esercizi di autovalutazione e le attività svolte in laboratorio, gli studenti acquisiranno conoscenze basilari sulle proprietà fisiche, le tecniche di sintesi e i metodi di analisi delle NPs.

After the course, the students will have some essential knowledge of: 

  • the physical properties of NPs: structure, morphology, electronic properties, magnetic properties. 
  • the techniques of synthesis of NPs; 
  • the methods of analysis of NPs: microscopy, spectroscopy, magnetometry.

The course is intended for M. Sci. and Ph. D. students in Physics, Chemistry, Material Science and Material Engineering. The students will have prior knowledge of basic classical physics, principle of quantum mechanics and of solid state physics.
  • C. Binns, Nanoclusters, deposited on Surfaces, Surface Science Reports 44(1), 2001. 
  • R.L. Johnston, & J.P. Wilcoxon (Eds.), Metal Nanoparticles and Nanoalloys, Series Frontiers in Nanoscience, Vol.3, Elsevier 2012.
  • U. Kreibig, M. Vollmer, Optical properties of Metal Clusters, Series Materials Science 25, Springer 1995. 
  • G. Schmid G. (Ed.), Nanoparticles: From Theory to Application, Weinheim(FRG), Wiley-VCH Verlag GmbH & Co. KGaA, 2004. 

Many other references are suggested in the slide presentation for specific subjects.

The course is structured in different video presentations, where slides will be shown and commented. Concise and essential description of physical phenomena in nanosystems will be given following an experimental approach.

Introduction to the nanoparticles and their application


Definition of “nanoparticle” (4'19")
Top-down and bottom-up in nanotechnology (4'45")
Applications in medicine and diagnostics (6'39")
Applications in imaging and photovoltaics (5'46")
Applications in catalysis (4'59")
Morphology and structure properties of nanoparticles


Structure of nanoparticles: liquid drop model (4'23")
Structure of nanoparticles: jellium model (4'06")
Crystal structure: a resumè [1] (5'47")
Crystal structure: a resumè [2] (7'28")
Crystal structure: a resumè [3] (5'44")
Structure of nanoparticles: shells of atoms (5'32")
The Wulff construction (5'28")
Twinning in nanoparticles (3'54")
Shapes of nanoparticles (8'37")
Electronic properties: quantum size effects (4'13")
Optical properties [1] (8'35")
Optical properties [2] (3'45")
Optical properties [3] (11'46")
Plasmons (10'10")
Mie theory [1] (7'22")
Mie theory [2] (3'49")
Surface plasmon resonance (7'46")
Magnetic properties of nanoparticles [1] (7'23")
Magnetic properties of nanoparticles [2] (6'18")
Magnetic properties of nanoparticles [1] (6'39")
Physical synthesis of nanoparticles


Physical synthesis of nanoparticles: ball milling (5'02")
Ball milling and nanoalloying (2'25")
Physical synthesis: gas aggregation sources [1] (4'21")
Gas aggregation sources [2] (5'30")
Gas aggregation sources [3] (5'35")
Supersonic cluster beams, thermal evaporation and self aggregation (9'12")
Analysis of nanoparticles


Mass spectroscopy and filtering (13'41")
Transmission Electron Microscopy [1] (8'48")
Transmission Electron Microscopy [2] (7'16")
Scanning Electron Microscopy (7'51")
Atomic Force Microscopy (11'40")
Small angle X-ray scattering (13'38")
X-ray photoelectron spectroscopy (9'54")
Optical spectroscopies (9'15")
Magnetometry [1] (10'32")
Magnetometry [2] (6'39")
In flight experiments [1] (12'41")
In flight experiments [2] (14'06")
Experiments on nanoparticles


Examples: Ni nanoparticles (8'57")
Examples: Ni@NiO core@shell nanoparticles (14'43")
Examples: Ni@NiO and Ni@CoO nanoparticles (10'48")
Examples: FePt@MgO, Ag and Ag@MgO nanoparticles (18'31")
An experiment in our lab: synthesis and analyis of Ag nanoparticles (12'38")
Modalità Corso
Stato del corso
Auto apprendimento
5 settimane
12 ore/settimana
Ore formazione
Avvio Iscrizioni
6 Apr 2017
Apertura Corso
21 Apr 2017
Inizio Tutoraggio
21 Apr 2017
Fine Tutoraggio
10 Giu 2017
In autoapprendimento da:
11 Giu 2017
Chiusura Corso
Non impostato

Partecipazione e Attestati

Quota di iscrizione
Attestato di Partecipazione


Scienze Fisiche, Informatiche e Matematiche

Corsi collegati